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ABSTRACT
To attain TrustworthyArtificial Intelligence, Fairnessmust be ensured
in classification problems when protected (sensitive) features are
present. Since classifiers might reflect the biases in training data,
impacting humans and contravening current regulations, data qual-
ity is key. Preprocessing the dataset can help improve data quality;
particularly, undersampling can promote simultaneous learning of
protected features and classes. Sampling in class overlap areas, close
to the decision boundary, should magnify the impact on the clas-
sifier. This work proposes Fair Overlap Number of Balls (Fair-ONB),
an undersampling method that employs the morphology of data
groups (formed by combining classes and protected feature values)
to guide the undersampling in overlap areas. It utilizes balls to cover
groups andharnesses someof their characteristics, such as their radii,
numbers of covered instances and densities, to select where under-
sampling would be most effective for bias reduction. The experi-
mental framework shows that the Fair-ONBmethod increasesmodel
Fairness with a low effect on predictive performance.
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1. Introduction

The vast amount of data generated in this digital era [1], ranging from simple sensor mea-
surements to biometric data, makes harnessing relevant information impossible unless
some processes are automated. Machine Learning techniques learn the inner patterns in
data, making it possible for computers to predict the behavior of unseen data [2].

To learn these patterns and, in particular, the classes in supervised classification prob-
lems, the characteristics of each dataset are crucial [3]. Models learned from poor-quality
data do not reach high predictive performance andmight draw unrealistic conclusions [4].
In particular, class overlap hinders the model’s estimation of class boundaries, class
imbalance can reduce the importance of some classes in the model (which complicates
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an equable predictive performance), and the presence of noisy samples can distort the
predictions.

When datasets include personal data or sensitive features that might give rise to dis-
crimination, low data quality or mistreatment of said features can cause models to include
discriminatory bias [5]. This critical problem has led to auditability requirements and the
emergence of Artificial Intelligence regulations, such as the recently approved European
Union Regulation 2024/16891, an evolution of the European Union Artificial Intelligence
Act2.

Some sensitive features, usually referred to as protected features (for example, race or
gender), are prone to causing discrimination amongst groups or classes and cannot be
included in the model’s decision function. However, even if these features are not directly
involved in a model, the latter can still include biases depending on how instances with
different values on those protected features are classified (sometimes due to the indirect
impact of other highly correlated features to the protected one that themodel does use) [6].
Data and model Fairness are achieved when these possible biases amongst groups are
minimized or eliminated.

While Artificial Intelligence often focuses on optimizing prediction model parameters,
another approach focuses on data quality, as models learned on high-quality data tend to
achieve high performance [3]. A widespread approach to reduce model bias is to modify
the dataset via sampling [7]. Sampling data of specific groups or classes, either by adding
instances of those with fewer data (oversampling) or selecting for usage only some from
the over-represented ones (undersampling), can foster an equitable treatment of all groups
or classes by the model. When protected features are present, this would mean balancing
the model’s performance for instances of various values of the protected features. Specif-
ically, this means balancing the groups formed by the combinations of the class values
and protected feature values as, when taken into account separately, not only might bias
reduction be harder, but counterproductive situations might arise (for example, if more
gender = female samples were added to balance gender but they were added in negative
class areas, discrimination against gender = female would increase).

Sampling strategies in the literature follow varied strategies. Most are based on sam-
pling until group balance is reached, and while some strategies do it randomly [8], others
include restrictions or preferences, such as only balancing groups close to themodel’s deci-
sion boundaries [7] or using particular clusters [9]. However, just balancing a priori ratios
of protected feature values and classes does not always yield equal performance of the
model (particularly, when the distribution of instances with each protected feature value is
different).

The hypothesis of this work is that, to balance model performance on different data
groups, the focus must be on the group overlap areas of the problem, as those would be the
sections of the data space where sampling would be the most effective at modifying model
decisions and, thus, at improving Fairness. To this aim, using data morphology, which
has proven to be a remarkable strategy for characterizing groups or classes and detecting
overlap amongst them, would be a well-founded approach.

Amongst the strategies that locate and measure overlap in tabular datasets, the use of
‘OverlapNumber of Balls’ (ONB) is proposed [10]. This technique is based on the coverage
of data using balls that only include points from a single group. ONB employs morphol-
ogy to characterize the different groups in data, as well as to estimate group overlap and
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classifier performance. Furthermore, the information on the boundaries amongst classes
or groups provided by the ball coverage can also be harnessed formodel explainability [11].

The aim of this work is to leverage the overlap estimation capabilities of ONB and the
characterization of groups (obtained using class and protected feature value combinations)
derived from its coverage strategy to improve Fairness in classification models accord-
ing to protected feature values without a noticeable reduction in model performance. To
this end, we propose a preprocessing method via sampling called Fair Overlap Number
of Balls (Fair-ONB), which is based on group morphology and data neighborhoods. Since
undersampling allows for the reduction of both bias and noise (particularly due to using
morphology to locate it) and oversampling would only tackle the former, the proposed
strategy will perform undersampling.

The Fair-ONB method involves two stages: selecting the undersampling groups, and
then using percentile thresholds on coverage ball attributes, such as ball radius, number
of instances covered and density, to decide how to undersample. Unlike random sampling
strategies [8,12], it produces stable results due to using empirical measures to decide which
samples to eliminate, and the location of balls under the chosen thresholds (and the change
in group size that this would entail) can be easily quantified.

The effectiveness of the proposed Fair-ONBmethodwill be tested on several of themost
broadly-used real datasets in data Fairness studies. The a priori behavior of the different
threshold variables for instance filtering is studied, both in terms of predictive performance
and Fairness. The results are compared with FAWOS, a state-of-the-art, neighborhood-
based sampling technique [7].

The rest of this paper is organized as follows. Firstly, Section 2 presents the preliminar-
ies on Fairness, discrimination and bias. Then, Section 3 details the proposed Fair-ONB
method. Next, Section 4 describes the experimental framework for the evaluation of the
Fair-ONB method’s behavior. Section 5 shows the experimental results. Lastly, Section 6
presents the concluding remarks from this manuscript and some future work lines.

2. Preliminaries on fairness

This Section presents some preliminaries regarding bias in Machine Learning. Section 2.1
introduces important concepts and some of the different notions of Fairness, along with
their associated metrics. Section 2.2 shows some of the techniques present in the state of
the art for the minimization of bias, with an emphasis on sampling techniques.

2.1. On fairnessmetrics

The existence of discrimination amongst groups of people, that is, the treatment that
inherently favors some of them, involves substantial ethical problems and is legally
unacceptable3. Fairness in Machine Learning means the absence of bias or discrimination
amongst groups of data. This Fairness is checked with respect to protected features, such
as gender or race, which are variables in datasets whose unequal treatment would expose
the existence of discrimination.

Fairness and bias can be measured in different ways according to the situation, as stud-
ied in multiple surveys [5,13,14]. For example, it might be preferable that an equal rate of
acceptance for a grant between men and women, but when assigning a medical procedure,
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the actual need for such treatment (which might be different according to gender) must
also be considered.

According to these preferences, there aremultiple possible approaches in order to deter-
mine if a classifier is biased [14]. For example, in some cases the aim is to maintain
demographic parity, also named statistical parity, which involves the positive prediction
(beneficial for the person) being independent on the protected feature; that is, given a
prediction Ŷ, demographic parity is measured according to how different the chances of
obtaining a prediction Ŷ = 1 is for each value of protected feature P. This would create 2
similar metrics:

• Statistical Parity Difference (SPD): it measures the difference between the probabilities
of a positive classification between two protected feature values (Equation 1). In the
optimum case (equal chances), its value is 0.

SPD = Pr(Ŷ = 1 | P = 0) − Pr(Ŷ = 1 | P = 1) (1)

• Disparate Impact (DI): it measures the ratio between the probabilities of a positive classi-
fication between two protected feature values (Equation 2). In the optimum case (equal
chances), its value is 1. Given its extended use to check biases in the USA, this metric is
commonly applied [13].

DI = Pr(Ŷ = 1 | P = 0)
Pr(Ŷ = 1 | P = 1)

(2)

In some cases, a different version of Disparate Impact is used, namedAdaptedDisparate
Impact (ADI), whose values are between 0 and 1, with 1 being the optimum case. This
makesADImore tractable but overlooks bias direction. Its formula is given in Equation (3).

ADI =
⎧⎨
⎩
ID : ID ≤ 1
1
ID

: ID > 1
(3)

Other extendedmetrics would involve equality of probability (also named equalized odds)
and equality of opportunity, whose foci are the true positive and/or false positive rates
being the same for different values of the protected feature. Their associated metrics are
measured according to the difference in probabilities for each group and are named Equal
Probability Difference (EPD) and Equal Opportunity Difference (EOD), whose formulae
are given in Equations (4) and (5), respectively.

EPD = Pr(Ŷ = 1 |Y ,P = 0) − Pr(Ŷ = 1 |Y ,P = 1) (4)

EOD = Pr(Ŷ = 1 |Y = 1,P = 0) − Pr(Ŷ = 1 |Y = 1,P = 1) (5)

Unless they are based on the same types of probabilities (such as in SPDandDI), optimizing
multiple bias metrics simultaneously is generally unfeasible [15]; therefore, studies often
select one of them to measure Fairness.

2.2. Bias and discrimination reduction strategies

Having indicated multiple metrics that measure Fairness, knowing how to reduce biases is
also important. The use of model bias reduction techniques so that they comply with the
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current Fairness regulations is a currently thriving research area [6]. Consequently, there
are many techniques for bias reduction, from adding Fairness restrictions to the model’s
objective function [16], to adversarial training [17], adding weights to data with specific
protected feature values [18] or modifying the dataset so that it includes less bias before
learning the model [7]. Since this study is focused on dataset modifications via sampling,
the strategies in that area will now be outlined.

Most sampling strategies are mainly based on the equal treatment of the subgroups of
data defined by the combinations of class and protected feature values (for example, the
pair ofClass = 1 andGender = F). This is due to Fairnessmetrics taking both into account
simultaneously and, thus, seeking only class balance or protected feature balance on their
own would not be sufficient.

According to when these techniques that reduce classifier bias are applied, they can be
divided into three groups: preprocessing strategies, which work on the base data; inpro-
cessing strategies, which work during the learning process of the model; or postprocessing
strategies, which correct the model’s results after its prediction.

Preprocessing strategies work on the training data that will be used to learn the classifier.
The aim of these techniques is to detect whether the dataset includes a priori anomalies or
biases amongst the different subgroups in order to modify it appropriately [19]. This way,
themodels would not learn and reflect the biased behaviors stemming fromdata collection.

This a priori bias reduction so that the posterior model can have similar learning capa-
bilities for every group is usually obtained by balancing the number of samples for each
subgroup (according to the combination of classes and protected feature values) in the
dataset. To this end, the number of samples of the over-represented groups can be reduced
(undersampling), or it can be increased for the under-represented groups (oversampling).
This sampling is often done randomly in the appropriate subgroups [8,12], but sometimes
specific preferences are introduced (such as randomly sampling on the model’s bound-
aries [7,20] or amongst clusters [9,21,22]) or samples are selected iteratively [23]. Another
preprocessing technique consists on the modification of data labels (massaging) of certain
bias-inducing samples [24]. Albeit another technique is the elimination of the protected
feature so that the model is not directly exposed to bias, this strategy does not always work
as intended [12] since other features with high correlations with that protected feature can
still be present and, thus, the influence of that same protected feature would be indirectly
maintained; this would be the case, for example, of post code and race or wage.

Amongst preprocessing techniques, it would be important to highlight Fairness-AWare
OverSampling (FAWOS) [7], a sampling strategy based on instance neighborhoods.
FAWOS employs the k nearest neighborsmethod to label instances as safe (4-5 of its neigh-
bors share its class), borderline (2-3 of its neighbors share its class), rare (only 1 neighbor
shares its class) and outlier (no neighbors share its class). The labels of subgroups with
positive class and protected feature values that are discriminated against are used to grant
different probabilities for those instances for SyntheticMinority Over-sampling Technique
(SMOTE) usage, thus balancing the groups.

Regarding inprocessing and postprocessing techniques, the learning or modification of
the model can allow it to work with biased datasets directly. In these cases, different
weights can be assigned to data from different groups so that model learners would favor
those that would otherwise be disadvantaged [25,26]. Constraints can also be applied
so that the model is learned while considering Fairness [27,28]. Another strategy would
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be using multiobjective optimization, including both Fairness and performance at the
same time [23], or using adversary learning where certain protected feature values are
swapped [26,29]. Other techniques include a posteriori massaging of labels [9] or inter-
action with experts [23,30].

3. The fair overlap number of balls method

This Section describes in detail the functioning of the Fair-ONBmethod, the novel under-
sampling proposal based on data morphology. This method undersamples groups with
favorable bias so that protected groups are treated similarly by the classifier. This is done in a
guidedmanner, harnessing themorphology of the group coverage obtained from theOver-
lap Number of Balls (ONB) algorithm and its ball properties in order to select problematic
areas of the data space.

Firstly, the ONB algorithm is explained in Section 3.1. Then, some preliminaries on the
choicesmade during themethod’s creation are indicated in Section 3.2. Lastly, the structure
and inner workings of the method are introduced in Section 3.3.

3.1. Overlap number of balls

ONB is a class boundary estimation method that was initially conceived as a complexity
metric, that is, a technique thatmeasures howdifficult to classify a dataset is according to its
inner characteristics [10]. ONB is based on the Pure Class Cover CatchDigraph (P-CCCD)
coverage algorithm [31].

Its strategy is simple. Firstly, for each instance in the dataset, the biggest open ball (the
interior of the hypersphere of the same radius) that does not cover any points of a different
class is generated. Then, for each class, the balls that would cover the most points that are
not yet covered by other balls in the coverage set are iteratively chosen as part of said cov-
erage set, until all points of that class are covered. An example of this is shown in Figure 1.
ONB has an overall complexity of O(kn3), where k is the number of classes and n is the
number of instances to cover.

This coverage strategy has very beneficial implications.

• The coverage locates and maps classes in the dataset. This estimation of the class distri-
bution gives information on where it would be normal to find points of each class and
where their presence could be considered unusual or noisy.

• The number of balls that are necessary to cover the dataset gives information on both
how difficult to classify the dataset is and the degree of overlap amongst classes. This
information is very useful towards deciding whether preprocessing is necessary in order
to improve classifier performance [10].

• The ball coverage can estimate class boundaries, either in the base dataset or in the
classifier that is learnt from it. In the latter case, the morphology of these estimated
boundaries can be used to improve the explainability of complex classification models.
In particular, OverlapNumber of BallsModel-Agnostic Counterfactuals (ONB-MACF)
is a counterfactual generator that employs the boundary estimations of ONB to provide
counterfactual explanations [11].
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Figure 1. Example of the P-CCCD ball coverage algorithm that serves as the base for ONB. Firstly, the
maximum radii for the balls centered on each instance that do not include points of other classes are
calculated (a), and afterwards, the balls that cover the most points of their class are iteratively selected
until all points are covered (b).

Table 1. Groups obtained from the
combinations of protected feature and
class values.

Race Gender Class Group

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

3.2. Preliminaries on the Fair-ONBmethod

Given a dataset whose protected features and class are known, the combination of their
values is employed to detect and correct biases, given their paired involvement in Fairness
estimation formulae. For the Fair-ONBmethod, each of these combinations forms a group.
For example, a dataset with binary protected features “race” and “gender” and a binary class
would have the groups shown in Table 1.

The aim is to see how those groups are distributed since, depending on their overlap
and their degrees of imbalance, the classifier learned using the dataset can be biased.

At the same time, before employing the method, the existence of a priori biases in the
dataset or model is checked using a Fairness metric. In this study, said Fairness metric
is the Disparate Impact (DI, Equation 2), which, as a reminder, is the ratio between the
probabilities of obtaining a positive result (Ŷ = 1) according to the values in the protected
feature. This first check allows the selection of which subgroups need to be preprocessed.

As shown in Equation (2), when no bias is present according to a protected feature,
DI = 1; otherwise, the value is still considered good when it is between 0.8 and 1.25 [13].
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Figure 2. Disparate impact plot as the preferences of the classifier change.

Figure 2 shows the behavior of DI as the preferences of the model change (as happens
when its training data is modified). It includes the neutral DI value (1) and the positive
classification probabilities for the different values of a protected feature.

With this in mind, DI can be checked on the base dataset (with the existing ratios, to
detect pre-existing bias in the dataset) or on the model (using the predictions given by the
classifier, which elucidates whether the model is biased) for each of the protected features.
When DI>1, the bias favors the group with protected feature value 0; when DI<1, it is
biased towards the feature value 1.

3.3. Structure and functioning of the Fair-ONBmethod

The Fair-ONBmethod is based on the characterization of groups derived from the combi-
nation of class and protected feature values in the dataset. This is done via the data coverage
using balls obtained from ONB (see Section 3.1).

Once the coverage is obtained, the Fair-ONBmethod undersamples instances of favored
groups to foster a fair classification. This is done in a guided way, selecting instances in
problematic areas of the data space after harnessing the properties of coverage balls.

The Fair-ONBmethod selects the balls for undersampling in two stages: first, the groups
whose balls can be selected for undersampling are chosen; then, using their characteristics,
some balls of those groups (and the instances they contain) are eliminated.

3.3.1. Stage 1: group selection for preprocessing
When Fairness metrics indicate a bias towards a value of a protected feature in the dataset
(which would likely translate into that same bias being learnt by the subsequent classi-
fier), the chosen strategy is to perform undersampling of the groups with positive class
(Ŷ = 1) and said value (either 0 or 1) in the protected feature. Since there can be multi-
ple protected features simultaneously, there would be two ways of choosing the groups to
preprocess.

• Using the union of the groups with positive class and favored values in the dif-
ferent protected features (OR). Thus, if in the example of Table 1 there are biases
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favoring race = 1 and gender = 0, the groups to be preprocessed would be groups 1, 5
and 7.

• Using the intersection of the groupswith positive class and favored values in the different
protected features (AND). Likewise, if in the example of Table 1 there are biases favoring
race = 1 and gender = 0, only group 5 would be chosen for preprocessing.

Depending on the dataset characteristics, the chosen undersampling strategy can greatly
affect the results. For that reason, both group selection methods will be studied.

3.3.2. Stage 2: selection of balls from those groups for elimination
Once the ball coverage has been obtained, some ball attributes that might indicate noisy
areas or group overlap that can favor the existence of bias are studied. In particular, the
radius, the number of instances they cover and the density of balls will be observed. The
hypotheses regarding their possible effects on data bias are now described.

• Radius: if it is very small, the ball is in an area of group overlap, be it due to data
distribution or to the existence of noise.

• Number of covered instances: if it covers very few instances, the ball might not be truly
representative in the characterization of its class. It can also be in an area of groupoverlap
or noise.

• Density: if it is very low, the ball might have been generated using an isolated point
far from the decision boundary or just very far inside a class’ area, which might not
contribute much to the model’s decisions. While some balls with very high density can
also be problematic (due to, for example, having a very small radius), these particular
cases are already covered by the other premises, so highly dense but useful balls will not
be affected.

To perform the undersampling, percentiles (values of an attribute for which exactly
that percentage of cases have a lower value) of those three characteristics in the cover-
age are calculated and will serve as thresholds for ball selection. Using percentiles instead
of predefined values aims to have a better adaptability to each dataset.

Once obtained, the thresholds of all three ball characteristics are combined to decide
different degrees of preprocessing (for example, one test can simultaneously use percentile
5 for radius, 15 for number of covered instances and 10 for density). The balls from the
selected preprocessing groups whose radii, number of covered instances or densities are
lower than each test’s chosen ball characteristic thresholds are eliminated, along with the
instances they cover, due to being considered problematic.

The overall modus operandi of the Fair-ONB method is shown in Figure 3.

4. Experimental framework

This Section presents the experimental framework that tests the goodness of the proposed
Fair-ONB method, with the aim of improving model Fairness while maintaining perfor-
mance. Section 4.1 presents the datasets that will be used in the experiments. Section 4.2
explains the structure of the experiments and their parameters.



STATISTICS 979

Figure 3. The overall strategy of the Fair-ONBmethod starts with the generation of the groups defined
by the pairs of class and protected feature values. The group coverage is then performed using ONB
(in the plot, color is used to discern protected feature values, and instance symbols and circumference
design to indicate class values). According to a chosen Fairness metric, groups are selected for under-
sampling. Finally, undersampling is performed, eliminating balls of that group according to thresholds
(in the example, radius, density and number of covered instances were employed, respectively, from top
to bottom).

4.1. Datasets

This experimental framework includes the use of four datasets. The first three (COMPAS,
Adult and German) are the most used in the field of bias reduction [32]; the fourth dataset,
Ricci, was included to add more broadness to the study.

The exact versions of the aforementioned datasets have been modified to reduce the
computational complexity: categorical variables were transformed into binary ones via
one-hot encoding, and in the case of Adult, its size was cut in half (while maintaining its
structure via stratified sampling). The dataset characteristics (after those transformations)
are as follows.

• The COMPAS dataset predicts whether convicts will re-offend in the subsequent two
years, according to their personal data and criminal history. Once transformed, it
includes 6172 samples, 7 attributes (3 of them binary, 4 numeric), plus the binary class.
The protected features are race and sex.

• The Adult dataset evaluates whether a person will earn over 50.000$/year according
to census data. Once transformed, the reduced dataset includes 24.416 samples, 13
attributes (7 of them binary, 6 numeric), plus the binary class. The protected features
are race and sex.

• The German dataset predicts the credit risk of people. Once transformed, it includes
1.000 samples, 24 features (14 of them binary, 10 numeric), plus the binary class. The
protected features are gender and age.

• The dataset Ricci evaluates the promotion of a group of firefighters according to exam
results. It includes 118 samples, 4 attributes (2 of them binary and 2 numeric), plus the
binary class. The protected feature is race.
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4.2. Experimental structure and parameters

This study has two parts, each of them with a different aim.

(1) Testing the behavior of the different threshold variables (according to their percentiles)
in different situations, to detect whether there are certain thresholds that generally give
good results.

(2) Comparing the bias reduction when using the Fair-ONB method to that of
FAWOS [7], a recent neighborhood-based sampling strategy with whose strategy
Fair-ONB shares some similarities.

In order to properly evaluate classifier performance, 5-fold cross-validation is used in
each experiment for each dataset. Sampling methods are only applied on each experi-
ment’s training sets. The predictive performance is evaluated over the test set using two
usual metrics: AUC and accuracy. AUC is used in the first part of the study due to being
a more conservative metric and its aptitude in case of imbalance; accuracy is used in the
second part, once the good behavior of the Fair-ONB method has been proven, and to
allow for fair comparisonwith FAWOS (which samples groups until they are approximately
even, a situation where accuracy is a useful metric). Fairness is evaluated using Disparate
Impact. Performance and Fairness results are aggregated via the arithmetic mean of the
5 folds’.

For dataset preprocessing using the Fair-ONB method, up to the 5 first different per-
centiles are used for each threshold feature (radius, number of covered instances, density),
starting with 0 and going up in increments of 5. The combination of percentiles for each
threshold feature parameterizes the different experiments for each dataset. Moreover, the
experiments are performed using both union and intersection for undersampling group
selection.

The classifier used is a decision tree with its default parameters in version 0.23.2
of scikit-learn4 (the necessary version for FAWOS), except for including a fixed seed
(random_state=30). These classifiers are learned using the preprocessed training set of
each experiment.

In the second part of the study, the Fair-ONB method is compared to FAWOS [7]. The
fact that FAWOS is also a sampling method based on neighborhoods makes it the closest
strategy to Fair-ONB. FAWOS employs 5NN to label samples as safe, borderline, rare and
outlier according to howmany of their neighbors share their class. Then, labels are used to
allocate probabilities of those samples being selected for SMOTE.

The parameters used for FAWOS are the same as in the original study [7]. The weights
for each label group were 0 for safe, 0.6 for borderline and 0.4 for rare points (outliers
always get null weight), and oversampling factors were either 0.8, 1 or 1.2.

5. Experimental results

This Section presents the experimental results of the two studies. Firstly, Section 5.1 eval-
uates the effects of selecting different undersampling thresholds; then, Section 5.2 presents
the comparison of the results using Fair-ONB and FAWOS, two bias reduction sampling
methods.
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5.1. Behaviour of threshold features in the Fair-ONBmethod

This Section presents the results of the experiments on threshold combinations. Dis-
parate Impact is measured according to the different protected variables of each of the
four datasets, as well as classifier performance according to AUC, for each preprocessing
parametrisation. Thus, the aims are to check whether Fairness can be improved without
much effect on AUC, and whether certain thresholding parameters can be widely consid-
ered useful. Two sets of experiments are performed on each dataset, depending onwhether
union or intersection is used for undersampling group selection.

To better exemplify the different observed behaviors of union and intersection under-
sampling, the results on COMPAS and Adult will be plotted. To facilitate a global com-
parison, in this type of figure, Disparate Impact values for both protected variables in the
dataset and AUC values are shown simultaneously; furthermore, to better reflect whether
the method improves the results, the base results (with no preprocessing) are shown as a
horizontal black line and the optimum Disparate Impact (1) as a green one. In each case,
the radius will be used as the X-axis feature due to providing the most illustrative results.

5.1.1. COMPAS dataset
Figures 4 and 5 respectively depict the union and intersection undersampling results on this
dataset. As can be observed, the results when using different thresholds for the number of
covered instances create result clusters regarding Disparate Impact, with noticeable differ-
ences. Meanwhile, an interesting behavior is observed for intermediate values of radius
thresholds, where Disparate Impact varies greatly in this dataset. Substantial Disparate
Impact improvements can be attained on COMPAS (to the point of reaching the optimum
on “sex” with both types of undersampling, although with different parameters). AUC,
while slightly reduced, is comparable to the base value.

5.1.2. Adult dataset
Figures 6 and 7 show the union and intersection undersampling results on this dataset.
Here, union undersampling does not obtain noticeable improvements. Only slightly bet-
ter Disparate Impact results were obtained for both protected variables. However, with
intersection undersampling, Disparate Impact improves considerably for both protected

Figure 4. Behaviour of Disparate Impact according to the protected features (race and sex) and of
AUC when the radius threshold is modified and the other threshold variables are fixed, using union
undersampling on COMPAS.
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Figure 5. Behaviour of Disparate Impact according to the protected features (race and sex) and of AUC
when the radius threshold is modified and the other threshold variables are fixed, using intersection
undersampling on COMPAS.

Figure 6. Behaviour of Disparate Impact according to the different protected features (race and sex) and
of AUC when the radius threshold is modified and the other threshold variables are fixed, using union
undersampling on Adult.

Figure 7. Behaviour of Disparate Impact according to the different protected features (race and sex)
and of AUC when the radius threshold is modified and the other threshold variables are fixed, using
intersection undersampling on Adult.

variables, reaching the optimum in “race”. In the case of “sex”, much better results than the
baseline are also obtained while not reaching the often recommended [0.8,1.25] Disparate
Impact interval.
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5.1.3. Other datasets
For the German dataset, only slight improvements were obtained on “gender” since it was
already very close to the optimum Disparate Impact, while noticeable improvements were
attained according to the protected feature “age”. In this dataset, like in Adult, very similar
global Disparate Impact results were obtained when using union and intersection under-
samplings, and in both cases, it was possible to improve both Fairness and performance
simultaneously. As for the Ricci dataset, there is only one protected feature (“race”), so it
makes no sense to separate union and intersection (since there is only one possible group
to undersample). Slight improvements were obtained compared to the base case.

5.1.4. Lessons learned
A summary of the results obtained with all datasets, including the best results of each type
of undersampling (and the base case for comparison), is presented in Table 2. For each
dataset, the best results on each individual metric are presented in bold, while the results
of the parametrisation that minimizes DI globally (that it, the one that minimizes the total
distance to the optimum disparate impacts amongst the protected features) are presented
in bold and italics.

All in all, according to the results shown in Figures 4–7, as well as the overall results in
Table 2, the following conclusions can be reached.

• The choice between union and intersection undersampling can greatly affect the mini-
mization of Disparate Impact, as shown by the results on Adult (where intersection was
clearly the better choice). Given the fact that in the other cases both union and intersec-
tion fared similarly to one another, it would seem that using intersection undersampling
is the better choice overall.

• Choosing the right number of covered instances threshold is always very important, as
this threshold defines the different result clusters in the Disparate Impact plots. One of
the extremes amongst the percentiles chosen (being either the lowest or highest value)
gave the best results in all datasets, although which one is the right choice depends on
the dataset.

• The radius threshold shows the behavior/shape of clusters defined by the number of
covered instances threshold, whether it is mostly constant, increasing, decreasing, sig-
moidal, etc. Depending on the location of the plotted cluster compared to the optimum
Disparate Impact, different radius threshold values will be optimal.

• The density threshold gives different heights in the results cluster, so using different
threshold values helps fine-tune Disparate Impact depending on the cluster’s location
compared to the optimum Disparate Impact.

5.2. Samplingmethods comparison

This Section presents the results from the comparative study between Fair-ONB and
FAWOS, two bias reduction sampling methods that are based on data neighborhoods.

While the initial intention was to perform the comparison using all 4 datasets indicated
in Section 4.1, the particularities of FAWOSwould make using Adult unfeasible. The com-
putational complexity of FAWOS, which is not prepared to work on datasets that big (even
having already reduced its number of samples), is too high, as it uses 5NN for each sample
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Table 2. Comparison of Disparate Impact and AUC between the base COMPAS, Adult, German and Ricci
datasets and the best union and intersection undersamplings, along with the best undersamplings for
the optimization of each individual metric.

Dataset US Type Aim US Thresholds DI by protected feature Perf.

N_i R D Race DI Sex DI AUC

COMPAS Baseline – – – – 0.837 1.086 0.654

Union Global DI 1 0.0015 52.07 0.881 1.016 0.645
Race DI 2 0.0035 52.07 0.965 0.680 0.643
Sex DI 1 0.0015 2.41 0.853 1.000 0.649
AUC 2 0 34.95 0.874 0.805 0.662

Intersec Global DI 2 0.0013 52.07 0.868 0.999 0.647
Race DI 2 0.0035 52.07 0.885 0.966 0.643
Sex DI 2 0.0013 2.41 0.866 0.999 0.647
AUC 1 0 2.41 0.831 1.089 0.656

N_i R D Race DI Sex DI AUC

Adult Baseline – – – – 0.675 0.379 0.746

Union Global DI 1 0.0154 0.88 0.713 0.397 0.739
Race DI 1 0.0154 8.63 0.723 0.363 0.730
Sex DI 1 0.0154 0.88 0.713 0.397 0.739
AUC 1 0 0.88 0.675 0.379 0.746

Intersec Global DI 4 0.0154 6.73 1.006 0.622 0.709
Race DI 4 0 8.63 0.995 0.619 0.709
Sex DI 4 0 6.73 0.983 0.622 0.710
AUC 1 0 0.88 0.675 0.379 0.746

N_i R D Gender DI Age DI AUC

German Baseline – – – – 1.028 1.295 0.633

Union Global DI 1 0.7109 0.49 1.062 1.043 0.646
Gender DI 1 0.4383 0.22 1.015 1.269 0.643
Age DI 1 0.7109 0.49 1.062 1.043 0.646
AUC 1 0.7109 0.22 1.139 1.270 0.599

Intersec Global DI 1 0.5810 0.44 0.984 1.080 0.618
Gender DI 1 0.8257 0.36 1.000 1.419 0.633
Age DI 1 0.581 0.44 0.984 1.080 0.618
AUC 2 0.0363 0.44 1.229 1.229 0.649

N_i R D Race DI – AUC

Ricci Baseline – – – – 0.501 – 0.908

Union Race DI 1 0 5.49 0.513 – 0.916
AUC 1 0 5.49 0.513 – 0.916

multiple times per experiment. While the sample size could have been reduced again to
include the dataset in this study, the drastic reduction necessary would likely distort the
dataset characteristics.

In this study, accuracy was used to measure classifier performance, and since FAWOS
uses the Adapted Disparate Impact, which is a simple transformation of Disparate Impact
(see Equation 3), that was the chosen Fairness metric.

The best results obtained with each method (and their optimal parameters) on the
COMPAS, German and Ricci datasets are presented in Tables 3–5, respectively. As a
reminder, FAWOS parameters are the weights for safe (S), boderline (B) and rare (R) sam-
ples (as outliers receive weight 0), as well as the oversampling factor (OF); meanwhile, the
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Table 3. Comparison, according to Adapted Disparate Impact and Accuracy, between the best FAWOS
and Fair-ONB results on the COMPAS dataset.

Method Best Parameters Race ADI Sex ADI Tot. Dist. Opti. Accuracy

FAWOS Weights: S= 0, B= 0.6, R= 0.4, OF= 0.8 0.474 0.758 0.768 0.780
Fair-ONB Intersec. Thresholds: N_i= 3, R= 0.00, D= 2.47 0.886 0.972 0.142 0.771
Fair-ONB Union Thresholds: N_i= 1, R= 0.00, D= 34.37 0.873 0.999 0.128 0.747

Table 4. Comparison, according to Adapted Disparate Impact and Accuracy, between the best FAWOS
and Fair-ONB results on the German dataset.

Method Best Parameters Age ADI Gender ADI Tot. Dist. Opti. Accuracy

FAWOS Weights: S= 0, B= 0.6, R= 0.4, OF= 1 0.820 0.910 0.270 0.686
Fair-ONB Intersec. Thresholds: N_i= 1, R= 0.57, D= 0.36 0.796 0.942 0.262 0.672
Fair-ONB Union Thresholds: N_i= 1, R= 0.80, D= 0.22 0.789 0.925 0.286 0.682

Table 5. Comparison, according to Adapted Disparate Impact and Accuracy,
between the best FAWOS and Fair-ONB results on the Ricci dataset.

Method Best Parameters Race ADI Accuracy

FAWOS Weights: S= 0, B= 0.6, R= 0.4, OF= 1.2 0.282 0.910
Fair-ONB Thresholds: N_i= 1, R= 0.04, D= 5.52 0.467 0.917

parameters of the Fair-ONBmethod are the number of covered instances (N_i), radius (R)
and density (D) thresholds.

As can be observed, the Fair-ONB method obtains the best results according to Global
Adapted Disparate Impact (as indicated by the lower total distance to the optimum
Adapted Disparate Impact amongst protected features) and, very often, also the best
Adapted Disparate Impact on the individual protected features. Given the usual inverse
relationship between predictive performance and bias mitigation, it makes sense that
FAWOS obtains better accuracy results.

As a possible reason for this, Figure 8 shows two pie charts with the group distribu-
tions in the base COMPAS dataset and when the aforementioned best-performing union
undersampling is used. As can be observed, the best result is obtained without group bal-
ance, which is what most other methods (including FAWOS) would pursue, potentially
giving Fair-ONB the edge. This also exemplifies the importance of correctly harnessing
the morphology of protected groups towards modifying their proportions, as sampling in
the most relevant parts of the dataset outweighed random sampling in group balancing
(even if, in FAWOS, it was informed by neighbors according to 5NN).

6. Concluding remarks

This paper presents Fair-ONB, a new sampling method that employs guided under-
sampling in areas that are close to the decision boundaries, where models usually have
problems classifying the different protected groups. The Fair-ONB method harnesses the
morphology of groups to select samples for elimination, and unlike other random sampling
techniques, its logic is more justifiable due to its empirical approach.

As shown in the experimental study, the Fair-ONB method improves model Fairness
while maintaining or improving classification performance, reflecting the usefulness of
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Figure 8. Example of COMPAS group proportions in the base case (a) and with the best-performing
union undersampling using the Fair-ONB method (b), showing that achieving group balance was not
the optimal strategy.

using subgroup ball coverage for undersampling instance selection. Moreover, the Fair-
ONB method also achieves better bias reduction results than FAWOS, its neighborhood-
based competitor in the state of the art.

Therefore, this paper has shown the usefulness ofmorphology and neighborhood-based
sampling approaches towards classifier Fairness, a niche that has not been thoroughly
explored. In particular, the use of threshold variables and group coverage strategies, which
give information on multiple morphological properties of the groups in a dataset, have
been useful for the proper characterization of problematic overlap areas. Thus, the hypoth-
esis that using data morphology for undersampling instance selection can be a very useful
strategy is confirmed.

Regarding future work lines, combining morphology-based strategies with other pre-
processing techniques could lead to attaining higher fairness levels. Extending the exper-
iments and employing other data complexity metrics to evaluate them from other points
of view might also provide more information on the right thresholds for undersampling
experiments, reducing the necessary computations. Using a bigger scope and finding
synergies could allow for the implementation of more in-depth preprocessing techniques.

Notes

1. Regulation (EU) 2024/1689 of the European Parliament and of the Council http://data.europa.
eu/eli/reg/2024/1689/oj

2. Artificial Intelligence Act, https://artificialintelligenceact.eu/
3. Regulation (EU) 2024/1689 of the European Parliament and of the Council http://data.europa.

eu/eli/reg/2024/1689/oj
4. https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
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